
Source of Aquisition
NASA Ames Research Center

The Loyal Opposition Comments on Plan Domain Description
Languages

Jeremy Frank and Keith Golden and Ari Jonsson
Computational Sciences Division

NASA Ames Research Center, MS 269-2
frank@email.arc.nasa.gov
Moffett Field, CA 94035

Abstract

In this paper we take a critical look at PDDL 2.1 as de-
signers and users of plan domain description languages.
We describe planning domains that have features which
are hard to model using PDDL 2.1. We then offer
some suggestions on domain description language de-
sign, and describe how these suggestions make model-
ing our chosen domains easier.

The Loyal Opposition
PDDL has served as the underpinnings of the Planning
Competition, and has had an enormous impact on the
planning community as a whole. PDDL and STRIPS
have served as a lingua j’ranca for deterministic planning
domains, making it possible for researchers to compare
techniques on the same problems and enabling mean-
ingful comparisons of those techniques. The result has
been considerable progress in planning algorithms.

Recently, however, the problems of interest to the
planning community have changed. Goal achievement
by itself is no longer enough, and the form of the goals
has changed as well. Temporal planning requires meet-
ing goals that include temporal constraints and resource
cmstraints. While it is possible to model planning do-
mains with temporally extended state and resources us-
ing purely propositional modeling languages, it is ex-
pensive in modeler effort and results in huge domain
descriptions. By contrast, software domains such as
data processing, web services integration and and in-
formation integration generally require incomplete in-
formation, incompletely known dynamic universes and
sensing actions, but do not, generally, require rich mod-
els of time.

In this paper, we take a critical look at the design
of PDDL 2.1. Our perspective is that of researchers in
planning and scheduling who have considerable experi-
ence in designing and using planning domain descrip-
tion languages. We will describe planning domains that
pose problems for PDDL 2.1. We will then describe
what we believe are the core set of features for mod-
eling phiiiiiig dorniiiris. We will show how these core
features simplify the modeling of the domains of inter-
est.

Copyright 0 2 0 0 3 , American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

PDDL and its Discontents
In this section, we describe some domain models and
their PDDL 2.1 representations, and then discuss rea-
sons why the PDDL 2.1 model is problematic.

Temp oral Constraints and Instantaneous
Events
PDDL 2.1 requires that propositions hold for a non-zero
amount of time before they are used as preconditions for
actions. However, PDDL’s underlying representation
of states is not based on intervals, and so this makes
it difficult to specify the interaction between multiple
events that modify the same proposition. It will also be
difficult to see what domain axioms resulted in the sep-
aration of two events that modify the same proposition
in the final plan.

Part of the reason for this is that sometimes actions
require additional constraints t o decide whether the ac-
tion sequence is legal, and PDDL 2.1’s semantics forbid
such plans when there is a possibility of plan execution
failure. The following example appears in (Fox & Long
2003) . The model includes action A with preconditions
P V Q and effect R, and action B with preconditions P
and effect 7 P and S. These two actions are considered
mutually exclusive because a plan in which A and B
execute concurrently may fail. We might have A and B
execute at the same time in a state where -Q holds, for
example. PDDL assumes that the executions of A and
B are actually ordered, and that the order is arbitrary.
Thus, if the state happens to be one where -Q holds,
it may be that B happens first, making A fail both its
preconditions.

Modeling this scenario by asserting the intervals of
time over which P and Q hold, and forcing actions to
declare how long the precondition must hold, clarifies
the situation. For example, if A requires P to hold for
1 unit of time prior to A’s execution, then in order for
the plan to be legal, B can’t happen at a time that
makes P true for less than a unit of time. This makes
it possible to both post and check the constraints that
II?I?S~ Loid for both A and R to happen concirrently. If
P has held for long enough, then A and B can happen
at the same instant, even in a state where 1 Q holds.

A related problem is that it is hard to express cer-
tain temporal constraints in PDDL 2.1. For example,

1 -

w
(:durative-action take-picture
:parameters (?s - satellite ?c - camera ?o - observation)
:duration (= ?duration 24)
:condition (and (at start (pointing-at (?s ?o)))

(at start (on ?c))
(at start (stable ?s))
(over all (on ?c))
(over all (stable ?s))

(at start (decrease (energy ?s 5)))
(at end (increase (energy ?s 5)))))

:effect (and (captured-but-not-stabilized ?o)

(:durative-action stabilize-before
:parameters (?s - satellite)
:duration (= ?duration 5)
:condition (over all (stable ?s))
:effect (and(at end (stable ?s))))

(:durative-action stabilize-after
:parameters (?s - satellite ?o - object)
:duration (= ?duration 5)
:condition (and(at-start (captured-but-not-stabilized ?o))

(at start (stable ?s))
(over all (stable ?s)))

(at end (captured ?o))))
:effect (and (at end (not(captured-but-not-stabilized ?o)))

Figure 1: Temporal Constraints in PDDL 2.1

suppose that an action Take-Picture requires a propo-
sition stable to hold for a period lasting from at least
5 seconds before to at least 5 seconds after the Take-
Picture ends. Furthermore, the camera expends energy
only during the time of the exposure, which lasts 24 sec-
onds. During the intervening 5 seconds before and after
the exposure, the camera could be involved in other ac-
tivities such as changing the filters, but can’t slew (as
this results in vibration).

PDDL 2.1 does not allow direct expression of the
constraints on stability. As we said previously, there
is no way in PDDL 2.1 to write a condition that re-
quires a proposition to hold for an interval of time.
Thus, we can’t even require that Stable hold for 5 sec-
onds before Take-Picture can start. We can write an
action Stabilize-Before that lasts for 5 seconds, with
an effect Stable, after which Take-Picture can be per-
formed. Take-Picture also asserts Stable throughout
the 24 second interval, and properly asserts that the
instrument must be on, and affects the power properly.
Now, however, we must ensure that stability is held for
another 5 seconds. We can do so by asserting a con-
dition captured-but-not-stabilized for the observation.
The only way to assert captured, then, is to execute
the stabilize-after action. The only remaining problem
is that these actions should be executed back-to-back
to enforce our original constraint, and PDDL 2.1 has
no way of ensuring that this happens.

Notice that PDDL 2.1 does not allow direct asser-
tions that states hold for a period of time, but rather
uses action duration to indirectly affect the amount of

time that propositions hold during a plan. More gen-
erally, PDDL preserves the notion of preconditions and
effects from STRIPS, which simply doesn’t make sense
when considering plans with overlapping concurrent ac-
tivities. The stability condition described above is more
than a persistent precondition, in that it outlasts the
end of the action. PDDL has no mechanisms to specify
such requirements.

Exogenous Events
Consider a domain containing a spacecraft that collects
data which can be transmitted back to Earth only at
specific times. PDDL 2.1 forces this to be modeled
using constraints on the times that communication ac-
tions can begin and end. This must be accomplished
by using a conditional effect that enumerates, in the
condition, the possible start times for the communica-
tion windows. For instance, suppose that communi-
cation windows are open from times 1 to 5 , and from
times 7 to 10. The model in Figure 2 describes how this
works. Notice also that we have a function compute-
open-window-duration that determines how long the ac-
tion takes based on the start time.

While this enforces the correct behavior in the sense
that communication windows are open a t the correct
times, it doesn’t actually have the desired semantics;
if a use-window action occurs at a time when no win-
dow is available, the action occurs and uses time, but
the communication window is not open for use, when
in fact we would like the action to fail. Furthermore,
this approach requires rewriting the model for each new

(:durative-action use-window
:parameters (?s - ground-station)
:duration (= ?duration (compute-open-window-duration(?s ?start))
:condition (at start (closed ?s)))
:effect (and (when (or (and (> (?start 1)) (< (?start 5)))

(and (> (?start 7)) (< (?start 10))))
(over-all (in-use ?s))
(at end (not(in-use ?s))))))

Figure 2: Exogenous Events in PDDL 2.1

situation. In particular, the conditions and the func-
tion compute-open-window-duration now must be re-
vised for each new set of communication windows de-
sired.

The problem is that PDDL does not allow the user to
specify specify exogenous events that are known to be in
the plan. For a treatment of exogenous events in tem-
poral planning we refer the reader to (Smith & Jonsson
2002). Exogenous events require no explanation, and
may establish states that can be used by other actions.
Often, a null action is assumed to have established all
the propositions in the initial state; the ability to in-
clude many such exogenous actions at different times is
therefore a natural extension to planning domain initial
states. Including exogenous events will make domain
models more general; for example, the constraints in
the satellite domain governing communication activi-
ties can be removed, and a general condition establish-
ing the existence of a communication window can be
used instead. The initial state will contain a listing of
all communication windows.

Continuously Varying Quantities
Suppose we have an aircraft that can be refueled in
flight. We would like to model the amount of fuel in the
fuel tank while the aircraft is both consuming fuel and
being refueled. As pointed out in (Fox & Long 2003),
PDDL 2.1 offers two options for modeling this domain;
discrete durative actions and continuous durative ac-
tions. Discrete durative actions force all modification
of the fuel amount to occur at the end of the action.
Under some circumstances this assumption eliminates
plans that are legal. Suppose the plane has 5 units of
fuel left when the refueling action begins, and consumes
1 unit of fuel per unit of time. Suppose further that
the refueling operation adds 20 units of fuel but takes
10 units of time. Modeling with discrete updates, the
plane would be out of fuel before the refueling action
finishes.

Continuous durative actions allow the fuel state to be
continuously updated, and so the situation described
above can be avoided, since the net fuel change is to
add one unit of fuel per unit of time during refueling.
~ n i s increased power c~rnies ai a iiigii pice. The fim-
tion governing the amount of fuel must be evaluated
at arbitrary points during the action, and this imposes
strict requirements on concurrent actions updating the
same numeric quantity in the plan.

-. .

The requirement for continuous updating of variables
results in complex and overly restrictive semantics. It
is unnecessary to allow such unrestricted access to con-
tinuously varying quantities. First, (Fox & Long 2003)
indicate that plan validation only checks the values of
continuously varying quantities at finitely many points,
which implies that high order nonlinear functions can-
not be validated. Thus, the power of the approach is
not actually used. It is not clear whether such high or-
der variations are simply forbidden, or whether model
correctness is sacrificed in such cases. Second, modelers
usually have a good idea of the conditions under which
values of variables are needed, and can build the mod-
els to correctly account for these situations. As pointed
out in (Fox & Long 2003), an alternative model is pos-
sible in which the correct value of the fuel was only
guaranteed to be visible at the start and end of the ac-
tion. The action of refueling would change the rate of
fuel consumption, necessitating a new action, Flying-
and-Refueling. After the completion of the refueling, if
further flying was needed, then Flying would resume.

As discussed in (Fox & Long 2003), a model such as
this one is weaker than the model using continuous du-
rative action, in the sense that more states are needed,
more parameters may be needed to propagate values
through Flying-while-Refueling, and there is no way to
access the value of fuel in the middle of the Flying or
Flying-while-refueling actions. But the need for doing
so has been eliminated, because the Refueling action
now changes the state t o Flying-and-Refueling, and all
that is needed is the value of the fuel level at the end
and beginning of the actions to ensure the fuel value is
propagated correctly. The arguments in (Fox & Long
2003) indicate that all possible concurrent actions af-
fecting fuel may need to be considered. While this
is true, the approach taken in PDDL 2.1 actually in-
fers these concurrent actions during the plan validation
phase, and assumes that checking the endpoints of the
actions is sufficient to validate the constraints. In situa-
tions where this is not sufficient, the modeler must take
the burden on, to the extent they see fit when modeling
the application. Thus, the PDDL 2.1 approach makes
the commitment to model fidelity for the modeler, and
is inappropriate h r mme complex cases.

Resources
PDDL 2.1 uses numeric expressions to model resources.
We have seen examples of resources modeled this way in

(:durative-action fly
:parameters (?x - airplane ?y - waypoint ?z - waypoint)
:duration (= ?duration (travel-time ?y ?z))
:condition (and (at start (at (?x ?y)))

(over all (inflight ?x))
(over all (>= (fuel-level ?x) 0)))

(at end (at (?x ?z)))
(at start (inflight ?x))
(at end (not (inflight ?x)))
(decrease (fuel-level ?x) (* #t (fuel-consumption-rate ?x)))))

(:durative-action midair-refuel
:parameters (?x - airplane)
:condition (inflight ?x)
:effect (increase (fuel-level ?x) (* #t (refuel-rate ?x))))

:effect (and (at start (not (at ?x ?y)))

Figure 3: Flying and Refueling in PDDL 2.1

Figure 3. However, this approach makes it difficult to
do some very useful reasoning about resources. Tech-
niques like edge finding (Baptiste & Pape 1996) and
resource envelopes (Muscettola 2002; Laborie 2003) re-
quire an explicit notion of activities using resources in
order to work. In addition, modeling resources solely
through numeric expressions tends to hide information
from humans reading models, as well as forcing mod-
elers to hide obvious resources in the model by using
the numerical expressions. While techniques like TIM
(Long & Fox 2000) can be used to infer the presence
of resource behavior in planning domains, we feel there
are significant advantages to explicitly declaring these
parts of domain models. Note that complex numeric
expressions may still be necessary to determine the ac-
tual amount of resource consumption or production; for
example, a model of solar panel power production will
require complex numerical constraints to determine the
actual impact on the resource. However, an explicit
declaration of resources and explicit declaration of re-
source use by actions can be beneficial.

Infinite and Dynamic Domains
In order to ensure that the number of actions and
propositions is finite, PDDL permits only a finite num-
ber of objects, which must be explicitly enumerated,
and does not allow arguments to actions or predicates
to include numeric expressions (numbers being the only
non-finite domains permitted in PDDL). It also forbids
functions that return objects, which could be used to
introduce infinitely many new objects. The justifica-
tion for these restriction is that many planners rely on
being able to enumerate the actions and propositions in
a planning problem.'

Since PDDL is designed for the planning competi-

'A philosophical argument is also offered: that there are
only finitely many objects in the world; we agree that this is
technically true, but for all practical purposes it is false, and
the number of possible actions in many worlds of interest is
essentially infinite.

tions, tailoring it to the limitations of the planners com-
peting is reasonable. However, from the perspective of
modeling certain real-world domains, having such a re-
quirement encoded in the language definition is prob-
lematic. For example, (Fox & Long 2003) point out
that it is impossible to write a PDDL action to fly at a
certain altitude. Indeed, an action to drive at a given
speed or a given distance would also be ruled out for
the same reason.

This requirement also makes PDDL unsuitable for
modeling software domains. Software domains include
information integration, web services, data processing,
and other domains where the agent interacts in a soft-
ware environment. These domains are typically char-
acterized by a large, incompletely known and often dy-
namic universe. Since PDDL 2.1 was not designed to
handle sensing, we will defer the discussion of incom-
plete information. Instead, we focus on dynamic uni-
verses. In PDDL 2.1, actions that create new objects
must be modeled by enumerating all objects that might
appear during planning ahead of time, either explic-
itly or implicitly. For example, in the Settlers domain,
newly created machines are modeled using an integer
counter. Such an approach is inadequate for describing
software domains. For example, consider the following
command, which creates a new archive of the files in
directory -/papers:
z i p papers .z ip -/papers

This action fails to conform to PDDL restrictions in
two ways; first, it creates a new object, the archive
'/papers. z ip . Second, one of its arguments is a string,
which is not a finite type. Actually, both arguments
are strings, but one of them, -/papers, designates an
existing object, a directory, and the number of direc-
tories is finite. Following the general advice in (Fox &
Long 2003), we could use the directory as an argument,
rather than referring directly to its pathname, so that
argument would be finite. However, the other argument
designates a file yet to be created, so there is no existing
object for which it is an attribute.

- .
*
One might insist that such open-ended choices in ac-

tion selection create an unreasonable burden for the
planner, but nothing could be further from the truth.
Either the choice will be constrained by the problem
specification, in which case there may be no choice at
all, or it will not, in which case the choice doesn't mat-
ter; any random string will suffice. From a constraint
reasoning perspective, it is a trivial problem.

String and numeric arguments are ubiquitous in soft-
ware domains. In addition to file creation, many image
processing commands take numeric arguments, such
as thresholds, values for scaling, rotating, brightening,
compression factors, etc., and positions for cropping or
overlapping images. None of these values are attributes
of existing objects, but they are controls that the plan-
ner should be able to set, because whether, and how
well, the plan achieves the goal depends on the val-
ues of those numeric arguments. For example, a user
may want to scale an image to just fit on her screen,
maintaining the same orientation and aspect ratio. The

vertical extents of the image and of the screen. Another
user may want to combine two images which are at
different resolutions. Doing so will require scaling one
of the images so that its resolution matches the other;
the appropriate scale value depends on the resolutions
of the two images, and possibly additional constraints,
such as memory and the resolution of the final image.

One could imagine handling the object creation by

created. For example, we could have a few hundred
"blank" file objects, and instantiate them as needed
when new objects are created. However. this is not just
inelegant and inefficient; it is also inadequate. Consider
the reverse of the archive creation action above: archive

unzip papers .z ip

This action will create new copies of every file in the
archive papers. z ip , preserving the original directory
structure from "/papers, but rooted in the current di-
rectory. Since a single action can create an unbounded
number of new objects, listing all of the new objects up
front is clearly infeasible.

(Fox & Long 2003) raise the concern in connection
with infinite domains that extensional interpretations
of quantified preconditions are no longer possible. This
is not a problem in the examples we have discussed
because, although domains are dynamic, in any given
state, any object domain is finite and can be directly
determined from the execution trace that led to it. In
fact, there is no way to introduce infinite numbers of
new objects unless actions can have an infinite num-
ber of effects, which impossible to describe unless we
already allow quantification over infinite domains. In
other words, there is no way to get quantification over

A related issue is that an extensional interpretation
of universally quantified goals may not be possible, be-
cause the universe a t the time the goal is achieved is not
known at planning time, even if the agent has complete

I

I
I appropriate scale value depends on the horizontal and

~

I

I listing, in advance, all of the objects that could be

I

I extraction:
~

ir,fcite doLTA&ns iir!ess we drc& +&,re it.

information and all actions are deterministic. Indeed,
there could be many goal states with quite different
universes, depending on the execution traces followed
to reach the goal. However, this can be solved quite
simply by interpreting the Herbrand universe with re-
spect to the initial state, as is done in (Golden & Weld
1996).

Domain Description Languages: An
Ontological Approach

The essence of modeling is abstraction, and the essence
of abstraction is simplification - omitting details so that
the model is simpler than the thing being modeled.
Choosing the right abstraction for a problem makes the
problem much easier to solve. Domain description lan-
guages should enable modelers to abstract away details
of planning domains that they feel are irrelevant to the
task at hand.

There is an implicit agenda in the expansion of PDDL
to gradually encompass more and more features that
are needed for various planning domains. One pos-
sible conclusion of this is a grand-unified domain de-
scription language (GUDDL). As we have pointed out
in this paper, some of the problems with PDDL 2.1
stem from an attempt to shoehorn time and resources
into a STRIPS-based language. We anticipate similar
problems as other features are encompassed. Domain
modelers will tend to reject a language with unneeded
features if the presence of those features proves to be
a burden, either in increased computational complexity
or increased modeling difficulty.

STRIPS and earlier versions of PDDL impose one
set of abstractions: instantaneous action, the STRIPS
assumption concerning persistence of states, and so
on. Planning frameworks like CAIP (Frank & J6nsson
2003) impose different abstractions, such as the fail-
ure to distinguish state and action. PDDL 2.1 offers
yet another set of abstractions, the ability to assert
only local temporal constraints and tying temporally
extended states to actions with duration, and the free-
dom from modeling the interaction of some concurrent
actions that modify the same quantities. Incomplete
information, offers additional options for abstraction.
Some representations opt for a list of all possible states,
others for a probability distribution over all possible
states, in which the underlying representation is propo-
sitional. Still others reject the propositional abstrac-
tion, to allow sensors that return (possibly continuous)
values, but give up explicit case analysis afforded by
enumerating states.

It is unlikely that a modeler will model a behavior in
two different ways in the same model. Having a lan-
guage that supports different abstractions of the same
underlying concept also makes the language clumsy to
use and makes model validation more difficult. While
some of tiir ihtiactions are hierarchicd, forcing B plan-
ning domain to support the most concrete leads to both
inefficiency and frustration on the part of domain mod-
elers who don't use the power of the language. Fur-
thermore, it is unlikely that different abstractions will

be needed in the same model A domain modeler is un-
likely to want to put both continuously changing quan-
tities and discretely changing quantities into the same
model, for example. That same modeler, however, may
want unary resources in a model which also has con-
tinuously changing quantities. In order to unify the
languages, the resulting language will have to be less
abstract, and the language will become more unwieldy.

A Common Core
As an alternative to a single language for all planning
domains, we propose a common core for use in many
planning domain description languages. The core must
contain the essential elements of all planning domains,
and provide a common set of concepts that can be used
to develop many planning languages. These languages
can have different syntax, and different underlying im-
plementations that play to the strengths of the particu-
lar additional components, but depend on the same set
of underlying ideas.

We believe that all planning domains require the fol-
lowing components:
1. A notion of state. States must be allowed to contain

numerical arguments, but are fundamentally discrete
statements about the world.

2. A notion of objects or attributes, which take on states.
3. A notion of the conditions governing state transitions.

States may either end on their own or be terminated
by an event or action. The rules governing these state
transitions must be encoded in the domain descrip-
tion. Sometimes these transitions may be uncertain,
and sometimes they may be conditional, but they
must be described.

4. A notion of the requirements states impose on plans.
States must be explained; either an event establishes
them or they are exogenous. Furthermore, states gen-
erally impose conditions on the plan. Again, some-
times the requirements may be conditional.
Modelers must describe the set of objects that exist

in the world, and enumerate the states they can take on.
For example, a satellite object may take on the states
Take-Picture, Idle, Communicate or Slew. This is
a generalization of the idea that propositions are either
true or not true at any given instant. By declaring
the set of states an object can take on, the modeler
also declares a number of mutual exclusion constraints.
That is, objects can be in only one state, and the set of
possible states is enumerated in the model. Notice how
the semantics of negation are affected. In the example
of the satellite domain, if a satellite is not Idle then by
closure it must be in one of the other states.

A state takes the form P(z l...x,) where P is a predi-
cate and z, are parameter variables. We will refer to the
additional variables op, s p and ep, the object, start and
end variables of the state. Extending the set of variables

'A potential exception to this is unified agent models,
in which models of different levels of abstraction must be
coordinated. However, it is unlikely that the same planner
will work with the different levels of abstraction.

this way makes it easy to post precedence constraints
among states, and also to make decisions about what
object of a class of objects takes on a required state.
The constraint P, < P, is implicitly understood to hold
for all states. We view these additional variables as be-
ing implicit parameters to all states.
Domain Axioms provide the means to explain states,

assert the conditions that states impose on plans, and
describe the rules of state transitions. This is accom-
plished using constraints on the variables of states.
Domain axioms take the form: P(x1 ... 2,) AG(X) -+
Q(y1 ...y 3) A H (Z) where X c {xi ... xi} and 2 C
(2 1 ... xi,y l...yj}, G is a set of conditions and H is a
set of constraints. If a state P is in the plan, then
some other states must be in the plan, and some con-
straints must hold among the variables representing
those states. Notice that the states that must be in the
plan are not necessarily new states; they can be states
established some other way. Thus, planners must de-
cide whether to reuse existing states or establish new
state instances. The conditions G allow US to specify
that some of the variables in P must take on certain
values for the axiom to apply. The constraints in H
allow us to impose limitations on the possible ground
states Q that can be in the plan along with P.

The conditions can be used to dictate the transitions
between states. Constraints can be posted among the
parameters to limit the legal sets of predicates as well
as imposing ordering constraints among the states in
the plan. As an example, suppose that in the satellite
domain a Take-Picture can be followed by another
Take-Picture or an Idle state. The rules
Take-Picture(p, s)A eq(s,take-picture) -+
Take-Picture(q, t) ,eq(etpl, stp2)

Take-Picture(p,s)A eq(s,idle) -+
Idle0 ,eq(etp,si)

ensure these conditions hold.
Constraints are also a natural way to model both

disjunctive preconditions and conditional effects. For
example, the rules
Take-Picture(p, s)A eq(p, idle) -+

Take-Picture(p, s)A eq(p,warmup) -+

indicate that two possible preconditions can hold for a
Take-Picture action, either an Idle action or a Warmup
action. This easily enables back chaining from exoge-
nous events.

Constraints also replace numerical expressions in
PDDL 2.1. Let us consider the in-flight refueling model
of Figure 3. This would be modeled in the following
way: the action
Fly(s,i,c,y) A eq(s,refuel) +

Idle(), eq(stp, e ,)

Warmup0 eq(st,, e,)

Fly-and-refuel (t, j , d, 6) fuel-cons (s f , e f , i, c) ,
eq(j, c) , e q b , b)
computes the fuel consumption for the Fly action,

which determines how much fuel is available when the
refueling begins. We post equality constraints to en-
sure that the destination of the original Fly operation

. .
I

-t

persists in the new action. The Fly-and-Refuel action
looks similar:

.Fly-and-Ref ue l (s , i, c, y) A eq(s , f l y) +
Fly(t , j , d, b) , fuel-prod(sf, e f , i, c) , q (j , c) ,eq(y. b)
In this case, we post the constraint that fuel is pro-

duced instead of consumed, but otherwise the state ax-
ioms look very similar.

Exogenous events are simply assertions that actions
take place in a plan. One way of thinking about ex-
ogenous events is that they are simply a set of sim-
ple domain axioms that always hold. Since they are
volatile in the same way that goals and initial states
are, they properly belong in the initial state file, It is
very convenient, however, that we can express them us-
ing the same underlying concepts that we use to express
the domain axioms. Returning to the communication
windows example, we can express the assertion that a
communication window is in a plan as follows:
TRUE + Corn-Window()
and constraints that a communication window is fol-
lowed immediately by a closed communication window
are written
TRUE +

Corn-Window() , No-Corn-Window0 , eq(e,, s,)

Pros and Cons of a Constraint-Based
Represent at ion
A number of aspects of PDDL 2.1 make it difficult to
build planners that work by means other than progres-
sion. For example, suppose that a goal is to fly an
airplane to a city, but nothing in the goal specifies the
remaining fuel. A progression planner can simulate the
Fly action with the current fuel and check for action
success. However, a regression planner must figure out
how to invert the functions in the domain axioms to
determine the minimum amount of fuel needed to per-
form the action in the city of origin. Constraints make
this easier, since they are simply relations on the le-
gal vaiues of the variables. In a sense, however, this
moves the problem to the underlying support system
to enforce the relation correctly. However, this is not
required. Domains can be written that involve only
successor state axioms, or only involve explanatory ax-
ioms. Thus, if a modeler knows that only progression
planning is needed, only the successor axioms need to
be put in the model.

As with PDDL, generic states can be introduced
without fixing the entity that takes on that state. Since
this is just another variable, it can be constrained just
like any other variable. However, as we said earlier,
mutual exclusion is enforced on objects as a part of the
semantics of objects. For PDDL, this must be done by
other means, either using hand-coded domain axioms or
propositions or numeric expressions to simulate unary
resources.

STpdpS &ori to eET&re ih& ycpe-
sitions that are not negated persist in time. This is a lit-
tle harder t o do using our framework. Since properties
of objects are manifested as parameters in the states,
we need to ensure they are propagated from state to

iises

state using equivalence constraints, as we saw in the
Fly-and-Ref uel example.

PDDL actions can change the value of many propo-
sitions at once. Synchronizing state changes using the
concepts we describe is also simple. We can write a
rule that forces many objects to change their states all
"simultaneously".

An advantage of our approach over PDDL is that we
can write rules that require unconditional state changes.
However, in some cases, we are actually forced to do
so; an example is "idle" states where we would like to
persist some state information.

We have eliminated explicit actions from our repre-
sentation. Part of the reason for this is that, when
states have duration, there is a blurring of the distinc-
tion between temporally extended states and actions
with duration. In many domains, some properties that
appear "static" are really "active"; a spacecraft point-
ing at Earth is performing many functions in order to do
so, for example. Finally, some states may only hold for a
short time, as opposed to continuing indefinitely. Since
actions can be mimicked using parameters of states,
and since most propositional planners assume actions
to be instantaneous, we feel this imposes no great bur-
den. As we discuss later, actions can be introduced at
the syntactic level if desired. However, the underlying
semantics is concerned only with state transitions.

Extensions
How can the core be extended? We describe three prin-
cipal extensions: states with temporal extent, uncer-
tainty, and dynamic domains. All of these extensions
are very natural and the fundamental concepts we have
described above make it easy to create languages that
support these features.

State Duration and Metric Temporal
Constraints
States can be extended to have duration, and con-
straints then govern duration and the temporal re-
lationship between states. As an example con-
sider the Take-Picture state. Suppose its duration
is 24 seconds. Then we have the following rule:
Take-Picture (p , s) +

addeq(stp, 24, e tp)
States are now more properly called intervals. Note
that this is a very natural extension given the represen-
tation described previously; we merely add more con-
straints on the start and end variables of states.

More generally, we can post any constraints in Allen's
algebra. For example, consider the satellite domain in
which the Take-Picture state required the satellite to
be S tab le for 5 seconds before and after the action.
Consider the domain description in Figure 1. Compare
it to the following:
Taire-pi C. -L-- Lure :-E. SI +

Stab le (t) , eq(s , t) ,
addeq(ss, -5, ST) ,addeq(es, 5, eT>
We can concisely express the constraint that a

Take-Picture state requires a S tab le state that "con-

tains” it, and express the exact constraints that must
hold between the temporal variables of the states. Fur-
thermore, we can also ensure not only that some state
occurs in the plan, we can ensure that it happens at a
particular time.

If states have duration, we can no longer employ the
STRIPS axiom, States do not necessarily persist indef-
initely; we must write the successor axioms and frame
axioms for all states. However, this does not impose a
serious burden on the modeler in most cases. A domain
axiom can indicate that a particular state can last in-
definitely, but their successors must be enumerated in
case the state is terminated. For example, consider the
Idle state in the satellite example. In the event that
a state terminates, we must describe what states can
follow it. Termination is accomplished by assigning or
constraining the duration of the state. Defining succes-
sors can be done a number of ways, but an easy way is
to use a parameter of the state to define the possible
successors, then use conditions as we have described in
previous examples. The rules would look like this:

Uncertainty
Uncertainty can be added in several different flavors to
accommodate the needs of the domain. For example,
in a contingency planning context, one might only wish
to provide the set of possible outcomes. Those wishing
a description more like MDPs can provide probability
distributions over action transitions. If we revisit the
satellite domain, we see that the rules need to be aug-
mented in these cases. Suppose that trying to take a
picture may fail because the shutter does not open. We
can do so by introducing a special set of world-choice
variables for each state, which are “set” by the world.
For example, suppose the Take-Picture action either
results in a Camera-Ready state or a Camera-Broken
state, conditional on an outcome, !o, which the planner
has no control over:
Take-Picture (p , s)
A eq(s , take-pic) , eq(!o, ready) -+
Take-Picture (p , s)
A eq(s,take-pic) ,eq(!o,broken) +
Camera-Ready0 ,eq(etp, s,)

Camera-Brokeno ,eq(etp, sg)
A richer representation of uncertainty allows us to

specify a probability distribution over possible out-
comes. We can augment the above example by as-
sociating probabilities with the different values of the
outcome variable !o. Notice we need only do this for
successor state transitions, not explanatory axioms.

A more complex task is to handle continuous proba-
bility distributions over the outcomes of actions. Uncer-
tainty can be represented in terms of unknown values
of variables. For example, uncertainty over the start
time of an event can be expressed as an interval repre-
sentation for the start-time variable. Again, we must
take care to distinguish between uncertainty, where the
world chooses, and temporal flexibility, where the agent
chooses. More sophisticated representations can add
probability distributions over values in the interval. For

example, if the Take-Picture action results in an un-
certain amount of onboard storage use, we can imagine
extending the set of constraints to involve continuous
probability distributions as constraints ever quantities.
Sensing actions can constrain the parameters of the dis-
tributions, for example. However, the fundamental no-
tion of constraints over variables in the states still holds.

More importantly for software domains, we can rep-
resent uncertainty over the value of an object attribute,
such as the pathname or size of a file. Here we see a sig-
nificant advantage over propositional representations,
because these attributes have infinite domains; repre-
senting the possibilities as a list of worlds is impossible.
Instead, we leave the domain of the variable open, to
indicate that it could have any value, or partially open,
to indicate that it is restricted to a particular subset of
values.

In addition to uncertainty over the attributes, we
can represent uncertainty over the objects themselves
using the same representation. It is not necessary to
list all objects that could exist in the world; it is suf-
ficient to represent the actions that can discover new
objects and dynamically introduce new variables as
needed to describe new objects as they are discovered.
We can represent sensors that return arbitrary num-
bers of new objects by making the world-choice vari-
ables !o universally quantified (Golden & Weld 1996;
Golden & Frank 2002).

Dynamic Domains
Dynamic domains arise both in the context of sensing,
when a new object in the world is detected, and ob-
ject creation, when an action in the plan leads to the
creation of new objects whose states must be reasoned
about. We can handle sensing and object creation US-
ing a similar approach. A newly created value is sim-
ilar in most respects to a newly sensed value, the dif-
ferences being that, in the case of object creation, the
world changes and the planner has some control over the
outcome. We can represent a new object, such as the
output of a data-producing action, as a variable whose
value is a skolem function of the corresponding action.
As in the case of sensing, if the number of objects that
will be created is unknown (because it depends on an
unknown number of inputs, for example), we can repre-
sent the effect using universal quantification, where one
variable is used to represent a set of objects.

A simple extension to the form of domain axioms
enables this. Recall that domain axioms can lead to the
creation of a new state for an object, if an existing state
isn’t appropriate. Thus, there is already precedent for
constraints that hold to justify the existence of a new
state. We can extend the form of domain axioms to
enable the creation of new objects as well. For example,
consider the zip file creation action. Let us suppose that
the states a zip file can be in are Idle, Compressing,
Uncornpressing , Moving, and the properties of interest
of zip files are its size, whether or not it is compressed
(representcd by a boolean) and its location. We can
write this as follows:

.4

Zip(2,p) +
new Zip-File, Idle(rn,s ,c) ,eq(c , fa lse)
zipsizeof (s , p > ,eq(rn, I) ,eq(si, e,)
The keyword new indicates that. the zip file we are as-

serting properties of is created and is like the approach
used in (Golden 2002). The semantics of this can ensure
that no state before the time of creation can be asserted.
However, we can also impose the usual constraints on
the I d l e state of the file, along with asserting the files
initial size, location, and compressed state.

Syntax
The fundamental construct we have used in the descrip-
tions above is that the presence of a state in a plan im-
plies some other states must exist, and that there are
some constraints. We can wrap these ideas in a number
of convenient syntactic construct,s. We will describe a
variety of these in this section.

We will begin with simple domains where states do
not have duration and metric temporal constraints are
not used. We can use syntax that posts ordering con-
straints on the states directly:
P < Q and translate this into the constraints on vari-
ables. If temporal constraints and states with duration
are used, we can use the Allen's algebra names or other
convenient labels to express temporal constraints. In
the case of the constraint that the satellite must be sta-
ble while taking pictures, this constraint is written
Take-Picture (p , s) +

contained-by[5][5] Stable(t)
Equivalence constraints can be posted by simply us-

ing the same variable names in the parameter lists of
the states.

For those who want to build models with a dis-
tinction between state and action, this can be accom-
plished. Actions would depend on objects being in par-
ticular states, and would ensure that some objects have
new states. A simple transformation would augment
cach state with action parameters m d the axioms can
be rewritten to ensure that the proper constraints are
posted among the variables of different states.

As we said previously, since properties of objects are
represented by parameters of states, a mechanism is
needed to propagate values to states where they are
involved in constraints. However, syntax can conceal
these details from the modeler. For example, objects
can be created with a fixed set of variables, and the
states can use these variable names in constraints. The
underlying reasoning system can then decide whether
new variable instances are needed and post the ap-
propriate constraints. In the satellite domain, Idle
states normally would propagate the amount of data
in the onboard storage unit to the next Take-Picture
or Communicate state. However, the action need not
name the variable representing the data amount, and

variable
representing the last computed quantity in the con-
straint involving the next state. Notice that this syntax
is similar t o the PDDL 2.1 syntax, but with a different
interpretation.

*1 I,IW . iinrieriying systpm ycc!b simply

Idle + Slew
Idle -& Take-Picture
Idle Communicate

...

Figure 4: A simple state machine representation of the
satellite domain. The rules implied by the state ma-
chine appear below the figure.

The astute reader will notice that, since mutual ex-
clusion is enforced on object states, that state machines
or timed automata are a good representation for many
planning domains. The transformation between these
representations and our fundamental language of states
and constraints is also very straightforward. Rules re-
lating the states of different objects are represented by
synchronizations across different state machines.

As we said previously, domain axioms can be thought
of as implications that always hold. However, another
way of thinking about them is as partial plans. As such,
we can assert that actions take place and have con-
straints among their variables, without deciding when
they take place, or even whether they are ordered or
not. Syntax describing partial plans can take a wide
variety of forms.

Finally, resource declarations can be added to a lan-
guage to augment numerical constraints, enable tech-
nologies like edge finding and envelope calculations, and
to add descriptive clarity to model definitions. With
an explicit resource declaration, we can replace axioms
designed to enforce mutual exclusion with a unary re-
source shared by many actions, as well as numerical
expressions meant to simulate resources.

For example, consider the case of a unary resource,
stability, used by 5 different actions: three Take-Picture
actions (one for each of three instruments on a satellite),
communication, and slewing. All the actions but the
slewing action require stability, and slewing makes the
satellite unstable. We might write this model as follows:
Resource unary s t a b i l i t y
Take-Picture (p , s) +
Communicate()+

Slew 0 +

uses S t a b i l i t y (st - 5,et + 5)

uses S t a b i l i t y (s t , e t)

iises Sta'ni i ity (.st, e t>

Each state now declares how it uses the resource. The
usage time can be constrained using mathematical func-
tions of the start and end times of the activity in any

way the domain modeler sees fit.
Now consider a mutli-capacity reusable resource such

as power. Resources now must declare their resource
impact as well as the time span during which the re-
source is affected. As an example:
Resource multi reusable power 5
Take-Picture(p, s) +
uses power (st - 5, et + 5 , 5)

Finally, we consider renewable resources, where each
activity can consume the resource or produce the re-
source. In this case, we must allow for the possibility
that an activity could change the resource in different
ways at different timepoints, in general.
Resource multi renewable power 5
Take-Picture (p , s) +
uses power (st - 5,5)

This looks quite similar to the declaration of a func-
tion in PDDL, but there is an important difference: it
is easier to understand that the resource is a complex,
flexibly scoped constraint that can be reasoned about
as a single entity. This simplifies modeling as well as
revealing the reasons for mutual exclusion of actions.
The computational burden is wholly shifted to the im-
plementation, where it can be efficiently handled in any
way the implementer sees fit. AI1 of these declarations
can be converted into simple arithmetic constraints, or
they could be used as the input t o edge finding, enve-
lope calculations, or other sophisticated techniques.

A final syntax issue is that of functional representa-
tions versus object based representations. PDDL 2.1
uses a functional representation, and allows objects
to be passed as arguments to functions. Other plan-
ning domain languages use a notion of objects with
attributes, where attributes can be accessed using syn-
tax that resembles that in object oriented programming
languages. Neither of these approaches is fundamen-
tally incompatible with a constraint-based representa-
tion such as the one we have proposed. The two ap-
proaches offer different representational transparency in
the model and in the way in which planners access the
information, but can represent the same things.

A Challenge for the Community
In this paper, we do not advocate a single planning
domain description language. Even though the funda-
mental concepts we have described appear quite general
and powerful, it would be easy to create a single, very
clumsy language supporting many features using these
concepts. However, we believe that using these concepts
as a starting point will make it easier for language de-
signers to extend the basic language in a wide variety
of ways and create good languages for accomplishing
many modeling tasks.

Several existing plan domain description languages
make use of some of the ideas presented here. Numerous
languages have more flexible temporal representations
(J6nsson et al. 2000; Smith & Jonsson 2002), use con-
straints rather than functions (Frank & J6nsson 2003),

and use dynamic domains (Golden & Frank 2002). All
of these languages have their pros and cons. Language
designers should be sensitive to the strengths and weak-
nesses of these languages for the various purposes they
are used for, and consider how the language is likely to
be used. The challenge for the planning community is
not to search for one language that fits all needs, but to
search for the core elements of languages that are most
suitable for modeling different planning domains.

References
Baptiste, P., and Pape, C . L. 1996. Edge-finding
constraint propagation algorithms for disjunctive and
cumulative scheduling. In Proceedings of the Fif-
teenth Workshop of the U.K. Planning Special Interest
Group.
Fox, M . , and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains. Jour-
nal of Artificial Intelligence Research.
Frank, J., and J6nsson, A. 2003. Constraint based at-
tribute and interval planning. Journal of Constraints.
Golden, K., and Frank, J . 2002. Universal quantifica-
tion in a constraint-based planner. In Proceedings of
the Sixth International Conference on Artificial Intel-
ligence Planning and Scheduling.
Golden, K., and Weld, D. 1996. Representing sensing
actions: The middle ground revisited. In Proc. 5th
Int. Conf. Principles of Knowledge Representation and
Reasoning, 174-185.
Golden, K. 2002. Dpadl: An action language for data
processing domains. In Proceedings of the 3rd NASA
Intl. Planning and Scheduling workshop, 28-33.
J6nsson, A. K.; Morris, P. H.; Muscettola, N.; Ra-
jan, K.; and Smith, B. 2000. Planning in interplan-
etary space: Theory and practice. In Proceedings of
the Fifth International Conference on Artificial Intel-
ligence Planning and Scheduling.
Laborie, P. 2003. Algorithms for propagating resource
constraints in ai planning and scheduling: Existing
approaches and new results. Artificial Intelligence
143(2).
Long, D., and Fox, M. 2000. Recognizing and exploit-
ing generic types in planning domains. In Proceedings
of the Sixth International Conference on Artificial In-
telligence Planning and Scheduling.
Muscettola, N. 2002. Computing the envelope for
stepwise-constant resource allocations. In Proceedings
of the Eighth International Conference on the Princi-
ples and Practices of Constraint Programming.
Smith, D., and Jonsson, A. 2002. The logic of
reachability. In Proceedings of the Sixth Interna-
tional Conference on Artificial Intelligence Planning
and Scheduling.

